Delamination Behaviour of Composite Materials Repaired with Structural Adhesives

P. Vigón¹, A. Argüelles¹, JA. Viña², M. Lozano¹, R. García¹

Universidad de Oviedo

Research group

IEMES

16-17 October 2025 - Coimbra, Portugal

¹ Department of Construction and Manufacturing Engineering, University of Oviedo, West Departmental Building No. 7, Viesques Campus, 33203 Gijón ² Department of Materials and Metallurgical Engineering, University of Oviedo, 13 Independencia St., s/n, 33004 Oviedo Spain

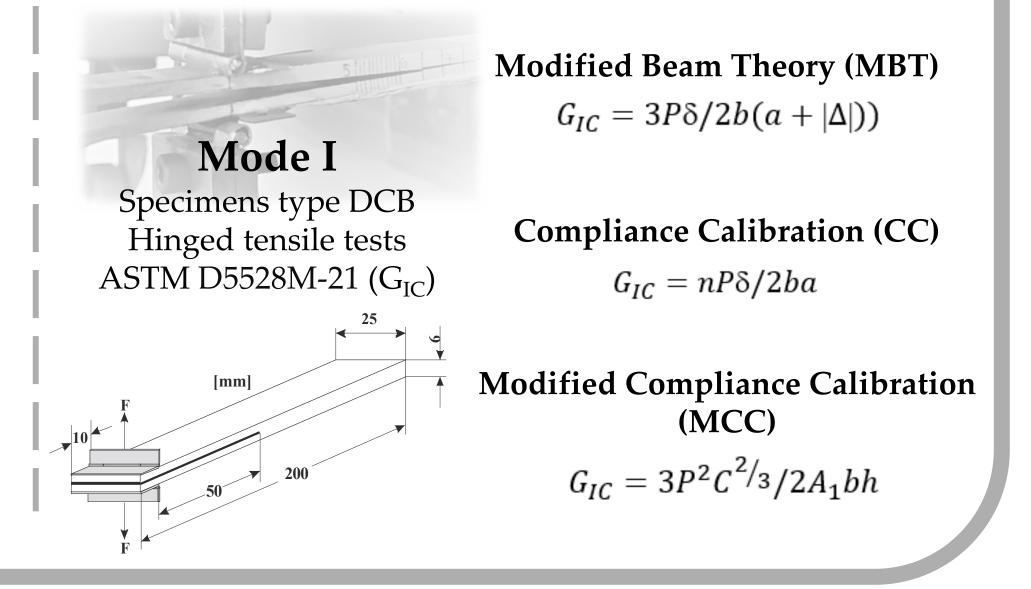
Introduction

- → Delamination is one of the main failure mechanisms in laminated composite materials, significantly reducing their reliability and service life.
- The relationship between matrix properties and fracture toughness plays a key role in predicting delamination behaviour.
- Structural adhesives are widely used for repair, with epoxy and acrylic adhesives being the most common in aerospace and industrial applications.
- Recycling and reusing composite materials is challenging due to their heterogeneous nature, making repair strategies increasingly relevant.
- This study investigates the repair applicability of carbon fibre—reinforced epoxy composites using three commercial structural adhesives: Loctite® EA 9461 (epoxy), Araldite® 2015 (epoxy), and Scotch-Weld™ DP8810NS (acrylic).

Property	Epoxy Adhesives	Acrylic Adhesives	
Impact resistance	Low	Good	
Service temperature	–55 to 120 °C	–70 to 120 °C	
Curing process	Heat or two component mix	Room temperature (fast)	
Handling/Recycling	Difficult	Easier	

Methodology

MATERIALS AND SPECIMENS


	mod	stic Iulus Pa]	Tensile strength [MPa]		Shear modulus [GPa]	Shear strength [MPa]
Material	E ₁₁	E ₂₂	σ_{11}	σ_{22}	G ₁₂	τ_{max}
8552	144	10.6	1703	30.8	5.36	67.7
3501-6	131	8.9	1954	24	5.09	79.3

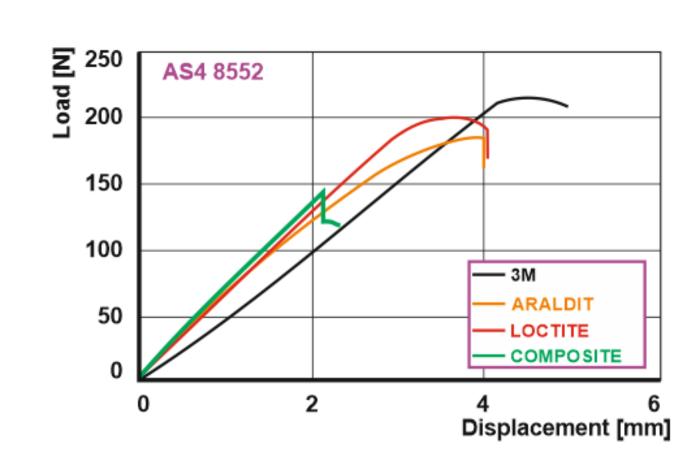
11 - Fiber's direction; 22 - Fibers perpendicular direction

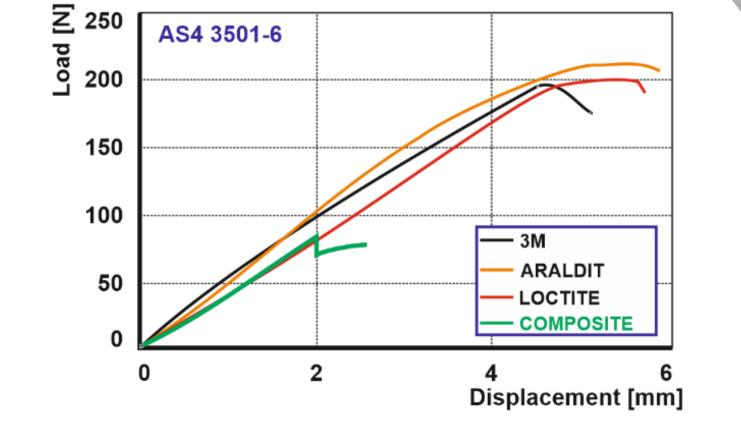
ADHESIVES

	Base	Viscosity [mPa·s]	Elastic modulus [GPa]	Tensile strength [MPa]	Shear strength [MPa]
Loctite® EA 9461™	Ероху	150000 a 250000	2.758	30.3	13.8
Araldite [®]	Ероху	Thixotropic	2	30.0	15.0
3M TM	Acrylic	45000	0.862	11.4	6.9

STATIC FRACTURE TOUGHNESS

Results


Base laminates show much lower delamination onset loads than adhesive joints. Load-displacement slopes mainly influenced by the 8552 matrix, like epoxy adhesives.

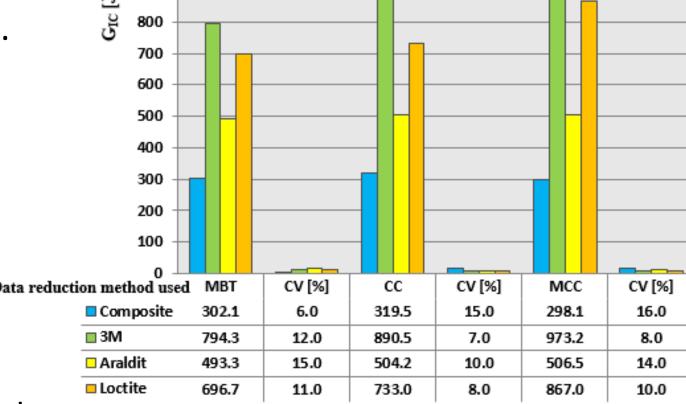

AS4/8552

- Higher deformation capacity then base material.
 Displacements nearly doubled.
- Epoxy adhesives show similar behavior: acrylic adhesive slightly higher.

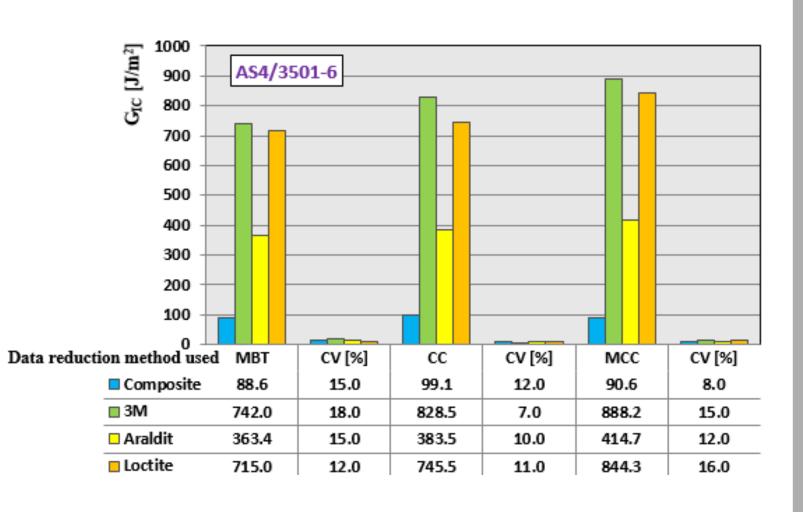
AS4/3501-6

- All three adhesives show comparable performance.
 - Epoxy adhesives behave almost identically.

AS4/8552 matrix

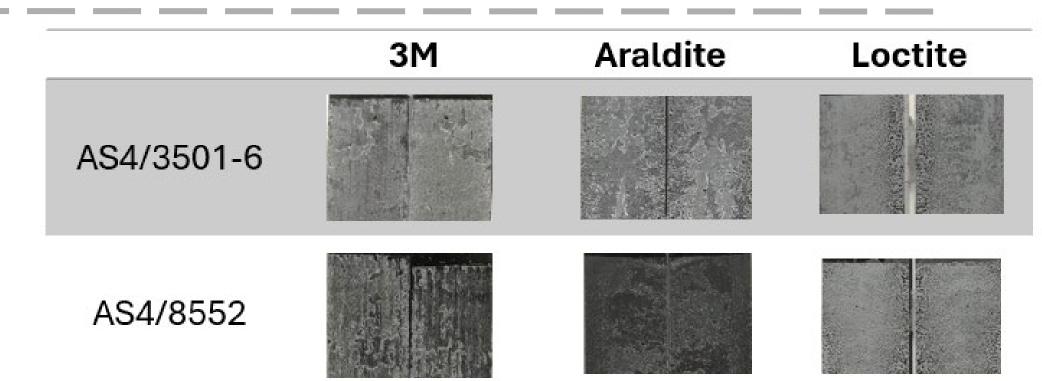

- Significantly higher fracture toughness (≈3× greater than 3501-6
- Calculation method has little influence; CC method yields slightly higher values (+5.6%).

AS4/3501-6 matrix


- Lower fracture toughness, regardless of adhesive used
- CC method gives slightly higher values (+9.9%)

Adhesives

- Acrylic adhesive (3M DP8810NS) provides the highest $G_{\rm IC}$ values
- Loctite (epoxy) close to acrylic; Araldite (epoxy) shows the lowest performance.


AS4/8552

Overall: Substrate type (8552 vs. 3501-6) and adhesive selection strongly influence fracture toughness.

Fracture Surface

- Significantly Fracture surfaces mainly show cohesive failure.
- 3M acrylic adhesive (AS4/8552 substrate): dominant adhesive failure, though resistance is not reduced
 - Epoxy adhesives (Loctite, Araldite): mostly cohesive failure, with fiber bridging observed
 - Fiber bridging artificially increases the measured fracture energy in epoxy joints. Substrate type (8552 vs. 3501-6) shows minor influence on fracture surface characteristics.

Conclusions

The base laminates show lower delamination onset loads compared to all tested structural adhesives. Load-displacement slopes are mainly influenced by the 8552 matrix, with similar behaviour to epoxy-based adhesives.

The 8552 matrix exhibits significantly higher fracture toughness than the 3501-6 matrix (up to three times greater), regardless of the calculation method applied.

The acrylic adhesive provides higher fracture toughness values than epoxy-based adhesives. Among the epoxy adhesives, Araldite shows the lowest performance.

The AS4/3501-6 laminate presents lower delamination resistance, independent of the adhesive used for repair.

Fracture surface analysis reveals minor differences related to the substrate type; however, epoxy adhesives show more deformation and fiber breakage, leading to fiber bridging that artificially increases the measured fracture energy.

Bibliography

